Carbon nanotubes mimic biology

Proteins in lipid membranes are one of the fundamental building blocks of biological functionality. Lawrence Livermore researchers have figured out how to mimic their role using carbon nanotube porins.

Using high-speed, atomic force microscopy (HS-AFM), the team showed that a new type of biomimetic channel—carbon nanotube porins (CNTPs)—also is laterally mobile in supported lipid membranes, mirroring biological protein behavior.

The research opens the door to use CNTPs as models to study membrane protein physics, as well as versatile and mobile components for artificial cells and hybrid systems that combine biological cells and man-made components.

Lipid membranes represent one the fundamental components of the architecture of life because they provide a versatile matrix for a variety of membrane proteins that can perform a variety of tasks including molecular recognition and signal transduction, metabolite transport and membrane remodeling.

The 2-D fluid nature of the lipid membrane not only allows it to adapt to a variety of shapes, but also permits membrane proteins to diffuse within this 2-D plane, enabling many important biological processe. Source: Carbon nanotubes mimic biology

This entry was posted in Biology, Technology. Bookmark the permalink.