Physicists might have just solved one of the big problems with light-based computers

If you’ve ever seen a microchip up close, you’ll know they’re composed of all kinds of tightly wound channels along which the electrons travel. The problem with building a photon-compatible version of this is that it’s extremely difficult to get light to travel around bends. The answer? Plasmonic components, “which take advantage of the unique oscillating interactions of photons and electrons on the surface of metal”, Patrick Tucker explains over at Defense One.

Sounds good right? But once again, it’s not that simple. A lightwave is approximately 1 micrometre (1,000 nanometres), but we’re close to making transistors as small as 10 nanometres. So we have two options: transmit lightwaves ‘as is’ and destroy an efficiency gains by having enormous components, or confine the light into nanoscale surface waves known as surface plasmon polaritons (SPPs).

We can do all of this already, but in the process, the plasmonic components will experience temperature increases of around 100 Kelvin, and basically fizzle out and die. And keeping them cool isn’t as easy as simply running a fan over them. “You need a cooling system that works on the scale of the photonic chip’s key features, less than a billionth of a metre in size,” says Tucker. “It’s one reason why many don’t consider fully light-based transistors a practical possibility for decades.

“In the words of George Constanza himself, “Why must there always be a problem?” But for the first time, researchers from the Moscow Institute of Physics and Technology say they’ve come up with a solution. The heat comes from when the SPPs are absorbed by the metal in the components, so the Russian researchers have inserted what they call ‘high-performance thermal interfaces’ into the components to protect them from the metal. Source: Physicists might have just solved one of the big problems with light-based computers

This entry was posted in Technology. Bookmark the permalink.