These tiny plastic chips can deliver therapeutic genes into cells

A graduate student is developing a cost-effective new method of delivering desirable genes into human cells using a tiny plastic chip. The technique could substantially reduce the cost and extend the reach of new cancer-killing immunotherapy treatments, which currently rely on viral vectors and cost around $5,000-$10,000 a pop.

The patent-pending device, which is being developed by engineering PhD student Ryan Pawell from the University of New South Wales (UNSW) in Australia, contains tiny features less than 1/10th the width of a strand of human hair, which can deliver biological materials to cells. This allows the cells to be reprogrammed, and essentially recreates a fully functioning laboratory on a piece of plastic the size of a postage stamp. “My overall goal is to use technology to reduce the cost of healthcare and to make it accessible to everyone, not just those who can afford it,” Pawell told ScienceAlert.

Lab-on-a-chip devices are already being used around the world to help provide on-the-spot diagnoses for diseases such as HIV and Ebola, but Pawell quickly realised that the potential for the technology was much broader. “We worked out how to make these tiny devices out of plastic using a specific diagnostic design. But then we realised that we could essentially use any other design you wanted to give them different functions,” he said. “Now I’m trying to use the technology to deliver DNA to cells and reprogram them to have a therapeutic effect.” This process could substantially bring down the cost of gene therapy, which is crucial in new medical treatments such as immunotherapy.Source: These tiny plastic chips can deliver therapeutic genes into cells

This entry was posted in Uncategorized. Bookmark the permalink.