Scientists have found a way to switch on a dormant gene in human red blood cells

Scientists from the University of New South Wales (UNSW) in Australia have used a world-first technique to change a single letter of DNA in human red blood cells, triggering them to produce more oxygen-carrying haemoglobin. The technique could lead to new treatments for sickle cell anaemia and other life-threatening blood disorders. And the best part is, it does it by activating a naturally occurring gene that’s normally dormant after birth.

“An exciting new age of genome editing is beginning, now that single genes within our vast genome can be precisely cut and repaired,” study leader and Dean of Science at UNSW, Merlin Crossley, said in a press statement. “Our laboratory study provides a proof of concept that changing just one letter of DNA in a gene could alleviate the symptoms of sickle cell anaemia and thalassaemia – inherited diseases in which people have damaged haemoglobin.”  The research was done in the lab, but because the researchers simply switched on a genetic variation that already exits in nature, Crossley explains that the approach should, in theory, be effective and safe to use in humans. “However, more research is needed before it can be tested in people as a possible cure for serious blood diseases,” he added.

Haemoglobin is the vital protein found in red blood cells that picks up oxygen from our lungs and transports it around the body. Throughout our lives we produce two different kinds: foetal haemoglobin – which is able to quickly suck up oxygen from our mothers’ blood – and adult haemoglobin. But the problem is that mutations in adult haemoglobin are extremely common, with around five percent of the world’s population carrying a mutant gene. Carrying just one of these isn’t so bad, but if someone inherits mutant haemoglobin genes from both their parents, it can severely damage haemoglobin production and cause life-threatening conditions, such as sickle cell anaemia and thalassaemia. However, a small group of these people also inherit a third mutation in their foetal haemoglobin, which results in it being produced after birth, and as a result, their symptoms are greatly reduced. “This good mutation keeps their foetal haemoglobin gene switched on for the whole of their lives, and reduces their symptoms significantly,” said Crossley. Source: Scientists have found a way to switch on a dormant gene in human red blood cells

This entry was posted in Biology. Bookmark the permalink.

3 Responses to Scientists have found a way to switch on a dormant gene in human red blood cells

  1. Phil Krause says:

    It’s tricky to switch on genes in human red blood cells because red blood cells don’t have any genes. They don’t have any DNA at all so how could they? This article can only be talking about the formation of red blood cells in the bone marrow, before the DNA is squeezed out of them. This is when the genes from the DNA is translated into the protein haemoglobin. To allow more haemoglobin and therefore more oxygen carrying capability in each cell, the DNA is squeezed out before the red blood cells find their way out of the bone marrow and into our blood. It’s difficult to imagine how we could make 200 billion red blood cells every day in our bone marrow. Along with 10 billion white blood cells and 400 billion platelets. The only ones to carry DNA when in the blood are the white blood cells.

    • Deskarati says:

      That’s a very good point Phil. Do they call them Red Blood Cells before and after the Nucleus is remove or do they have a different name before hand?

  2. Phil Krause says:

    Normally immature cells have a ‘blast’ prefix or suffix but I haven’t heard either of these associated with red blood cells. Reticulocyte is sometimes used for an immature red blood cell but not only when they are in the bone marrow. I guess that there must be a name for red cells before they loose their DNA but I don’t think I have heard of it.

Comments are closed.