When temperature goes quantum

A UA-led collaboration of physicists and chemists has discovered that temperature behaves in strange and unexpected ways in graphene, a material that has scientists sizzling with excitement about its potential for new technological devices ranging from computing to medicine. Imagine setting a frying pan on the stove and cranking up the heat, only to discover that in a few spots the butter isn’t melting because part of the pan remains at room temperature. What seems like an impossible scenario in the kitchen is exactly what happens in the strange world of quantum physics, researchers at the University of Arizona have discovered.

The findings, published in the scientific journal Physical Review B, suggest that quantum effects play a role in how heat moves through a material, challenging that classic notion that heat simply diffuses from a hot spot to a cold spot until the temperature is the same throughout. Quantum temperature control on a microscale level could someday enable new technologies—for example, in computing, environmental monitoring and medicine.

“Nobody has seen these quantum effects in the propagation of temperature before,” said Charles Stafford, a professor in the UA’s Department of Physics who co-authored the paper. “Heat diffusion has always been thought of as a process that you can’t affect. Ordinarily, a pattern of hot and cold spots within a material would be washed out by the inexorable flow of heat from the hot spots to the adjacent cold spots.”

Not in the strange world of graphene. The material—a sheet of carbon atoms linked in a hexagonal, chicken-wire structure—holds great promise for microelectronics. Only one atom thin and highly conductive, graphene may one day replace conventional silicon microchips, making devices smaller, faster and more energy-efficient. In addition to potential applications in integrated circuits, solar cells, miniaturized bio devices and gas molecule sensors, the material has attracted the attention of physicists for its unique properties in conducting electricity on an atomic level. Via When temperature goes quantum.

This entry was posted in Physics. Bookmark the permalink.