Europa’s Subsurface Ocean

water on europa

 Europa, is the sixth-closest moon of the planet Jupiter, and the smallest of its four Galilean satellites, but still the sixth-largest moon in the Solar System. Europa was discovered in 1610 by Galileo Galilei and possibly independently by Simon Marius around the same time. Progressively better observations of Europa have occurred over the centuries by Earth-bound telescopes, and by space probe flybys starting in the 1970s.

Slightly smaller than the Moon, Europa is primarily made of silicate rock and probably has an iron core. It has a tenuous atmosphere composed primarily of oxygen. Its surface is composed of water ice and is one of the smoothest in the Solar System

EuropaInterior1Scientists’ consensus is that a layer of liquid water exists beneath Europa’s surface, and that heat energy from tidal flexing allows the subsurface ocean to remain liquid. Europa’s surface temperature averages about 110 K (−160 °C; −260 °F) at the equator and only 50 K (−220 °C; −370 °F) at the poles, keeping Europa’s icy crust as hard as granite. The first hints of a subsurface ocean came from theoretical considerations of tidal heating (a consequence of Europa’s slightly eccentric orbit and orbital resonancewith the other Galilean moons). Galileo imaging team members argue for the existence of a subsurface ocean from analysis of Voyager and Galileo images. The most dramatic example is “chaos terrain”, a common feature on Europa’s surface that some interpret as a region where the subsurface ocean has melted through the icy crust. This interpretation is extremely controversial. Most geologists who have studied Europa favor what is commonly called the “thick ice” model, in which the ocean has rarely, if ever, directly interacted with the present surface. The different models for the estimation of the ice shell thickness give values between a few kilometers and tens of kilometers.

The best evidence for the thick-ice model is a study of Europa’s large craters. The largest impact structures are surrounded by concentric rings and appear to be filled with relatively flat, fresh ice; based on this and on the calculated amount of heat generated by Europan tides, it is predicted that the outer crust of solid ice is approximately 10–30 km (6–19 mi) thick, including a ductile “warm ice” layer, which could mean that the liquid ocean underneath may be about 100 km (60 mi) deep. This leads to a volume of Europa’s oceans of 3 × 1018 m3, slightly more than two times the volume of Earth’s oceans.

europa2

The thin-ice model suggests that Europa’s ice shell may be only a few kilometers thick. However, most planetary scientists conclude that this model considers only those topmost layers of Europa’s crust that behave elastically when affected by Jupiter’s tides. One example is flexure analysis, in which Europa’s crust is modeled as a plane or sphere weighted and flexed by a heavy load. Models such as this suggest the outer elastic portion of the ice crust could be as thin as 200 metres (660 ft). If the ice shell of Europa is really only a few kilometers thick, this “thin ice” model would mean that regular contact of the liquid interior with the surface could occur through open ridges, causing the formation of areas of chaotic terrain.

In late 2008, it was suggested Jupiter may keep Europa’s oceans warm by generating large planetary tidal waves on Europa because of its small but non-zero obliquity. This previously unconsidered kind of tidal force generates so-called Rossby waves that travel quite slowly, at just a few kilometers per day, but can generate significant kinetic energy. For the current axial tilt estimate of 0.1 degree, the resonance from Rossby waves would store 7.3×1017 J of kinetic energy, which is two thousand times larger than that of the flow excited by the dominant tidal forces. Dissipation of this energy could be the principal heat source of Europa’s ocean.

europa

The Galileo orbiter found that Europa has a weak magnetic moment, which is induced by the varying part of the Jovian magnetic field. The field strength at the magnetic equator (about 120 nT) created by this magnetic moment is about one-sixth the strength of Ganymede’s field and six times the value of Callisto’s. The existence of the induced moment requires a layer of a highly electrically conductive material in Europa’s interior. The most plausible candidate for this role is a large subsurface ocean of liquid saltwater. Spectrographic evidence suggests that the dark, reddish streaks and features on Europa’s surface may be rich in salts such asmagnesium sulfate, deposited by evaporating water that emerged from within. Sulfuric acid hydrate is another possible explanation for the contaminant observed spectroscopically. In either case, because these materials are colorless or white when pure, some other material must also be present to account for the reddish color, andsulfur compounds are suspected. Edited from Europa by Deskarati

This entry was posted in Space Exploration. Bookmark the permalink.