Nanostructures Offer Medical Images Without X Rays

Researchers at the University of California, Santa Barbara (UCSB) have developed a recipe for creating a nearly perfect compound semiconductor that could lead to more efficient photovoltaics, safe and high-resolution biological imaging and the ability to transmit massive amounts of data at higher speeds.

The researchers took the rare earth element, erbium (Er), along with the element antimony (Sb) and made a compound of the two into semimetallic nanowires or nanoparticles. Then they embedded those nanostructures into the semiconducting matrix of gallium antimonide (GaSb). Because the arrangement of atoms within the ErSb nanostructures matches the pattern of the surrounding matrix, the compound semiconductor forms an uninterrupted crystal lattice capable of manipulating light energy in the mid-infrared range.

According to the researchers, the highly conductive nanostructures can also polarize electromagnetic radiation in a broad range, providing a new platform for applications in the infrared and terahertz frequency ranges. The polarization effect could help in filtering and defining images with infrared and even longer-wavelength terahertz light signatures. This could make possible the imaging the internal structure of a variety of materials, including the human body, without the risk posed by using X-rays. Edited from Nanostructures Offer Medical Images Without X Rays

This entry was posted in Invention, Science, Technology. Bookmark the permalink.