Scientists find a practical test for string theory

Scientists at Towson University in Towson, Maryland, have identified a practical, yet overlooked, test of string theory based on the motions of planets, moons and asteroids, reminiscent of Galileo’s famed test of gravity by dropping balls from the Tower of Pisa.

String theory is infamous as an eloquent theoretical framework to understand all forces in the universe —- a so-called “theory of everything” —- that can’t be tested with current instrumentation because the energy level and size scale to see the effects of string theory are too extreme.

Yet inspired by Galileo Galilei and Isaac Newton, Towson University scientists say that precise measurements of the positions of solar-system bodies could reveal very slight discrepancies in what is predicted by the theory of general relativity and the equivalence principle, or establish new upper limits for measuring the effects of string theory.

The Towson-based team presents its finding today, January 6, 2014, between 10 a.m. and 11:30 a.m., at the 223rd meeting of the American Astronomical Society, in Washington, D.C. The work also appears in the journal Classical and Quantum Gravity. More here Scientists find a practical test for string theory.

This entry was posted in Physics. Bookmark the permalink.