Particle accelerator that can fit on a tabletop opens new chapter for science research

Physicists at The University of Texas at Austin have built a tabletop particle accelerator that can generate energies and speeds previously reached only by major facilities that are hundreds of meters long and cost hundreds of millions of dollars to build.

“We have accelerated about half a billion electrons to 2 gigaelectronvolts over a distance of about 1 inch,” said Mike Downer, professor of physics in the College of Natural Sciences. “Until now that degree of energy and focus has required a conventional accelerator that stretches more than the length of two football fields. It’s a downsizing of a factor of approximately 10,000.”

The results, which were published this week in Nature Communications, mark a major milestone in the advance toward the day when multi-gigaelectronvolt (GeV) laser plasma accelerators are standard equipment in research laboratories around the world. Downer said he expects 10 GeV accelerators of a few inches in length to be developed within the next few years, and he believes 20 GeV accelerators of similar size could be developed within a decade.

Downer said that the electrons from the current 2 GeV accelerator can be converted into “hard” X-rays as bright as those from large-scale facilities. He believes that with further refinement they could even drive an X-ray free electron laser, the brightest X-ray source currently available to science. A tabletop X-ray laser would be transformative for chemists and biologists, who could use the bright X-rays to study the molecular basis of matter and life with atomic precision, and femtosecond time resolution, without traveling to a large national facility. Via Particle accelerator that can fit on a tabletop opens new chapter for science research.

This entry was posted in Physics. Bookmark the permalink.