Robotic insects make first controlled flight

In the very early hours of the morning, in a Harvard robotics laboratory last summer, an insect took flight. Half the size of a paperclip, weighing less than a tenth of a gram, it leapt a few inches, hovered for a moment on fragile, flapping wings, and then sped along a preset route through the air. Like a proud parent watching a child take its first steps, graduate student Pakpong Chirarattananon immediately captured a video of the fledgling and emailed it to his adviser and colleagues at 3 a.m.—subject line, “Flight of the RoboBee.”

“I was so excited, I couldn’t sleep,” recalls Chirarattananon, co-lead author of a paper published this week in Science. The demonstration of the first controlled flight of an insect-sized robot is the culmination of more than a decade’s work, led by researchers at the Harvard School of Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering at Harvard.

“This is what I have been trying to do for literally the last 12 years,” says Robert J. Wood, Charles River Professor of Engineering and Applied Sciences at SEAS, Wyss Core Faculty Member, and principal investigator of the National Science Foundation-supported RoboBee project. “It’s really only because of this lab’s recent breakthroughs in manufacturing, materials, and design that we have even been able to try this. And it just worked, spectacularly well.”

Inspired by the biology of a fly, with submillimeter-scale anatomy and two wafer-thin wings that flap almost invisibly, 120 times per second, the tiny device not only represents the absolute cutting edge of micromanufacturing and control systems; it is an aspiration that has impelled innovation in these fields by dozens of researchers across Harvard for years.

“We had to develop solutions from scratch, for everything,” explains Wood. “We would get one component working, but when we moved onto the next, five new problems would arise. It was a moving target.” Flight muscles, for instance, don’t come prepackaged for robots the size of a fingertip. “Large robots can run on electromagnetic motors, but at this small scale you have to come up with an alternative, and there wasn’t one,” says co-lead author Kevin Y. Ma, a graduate student at SEAS.

The tiny robot flaps its wings with piezoelectric actuators—strips of ceramic that expand and contract when an electric field is applied. Thin hinges of plastic embedded within the carbon fiber body frame serve as joints, and a delicately balanced control system commands the rotational motions in the flapping-wing robot, with each wing controlled independently in real-time. More here with video RoboBees: Robotic insects make first controlled flight.

This entry was posted in Technology. Bookmark the permalink.