How do mysterious stars stay so young?

An artist’s conception showing a blue straggler being created by mass transfer in a binary star system. The giant star, seen in red, has lost hold of its outer envelope. This material is pulled towards its partner, forming an accretion disk, and is eventually consumed by the “proto-blue straggler." (Credit: Illustration by Aaron Geller)

Mysterious “blue stragglers” are old stars that appear younger than they should be: they burn hot and blue. Several theories have attempted to explain why they don’t show their age, but, until now, scientists have lacked the crucial observations with which to test each hypothesis.

Armed with such observational data, two astronomers from Northwestern University and the University of Wisconsin-Madison report that a mechanism known as mass transfer explains the origins of the blue stragglers. Essentially, a blue straggler eats up the mass, or outer envelope, of its giant-star companion. This extra fuel allows the straggler to continue to burn and live longer while the companion star is stripped bare, leaving only its white dwarf core.

The majority of blue stragglers in their study are in binaries: they have a companion star. “It’s really the companion star that helped us determine where the blue straggler comes from,” said Northwestern astronomer Aaron M. Geller, first author of the study. “The companion stars orbit at periods of about 1,000 days, and we have evidence that the companions are white dwarfs. Both point directly to an origin from mass transfer.”

via Astronomers explain blue stragglers: How do mysterious stars stay so young?.

This entry was posted in Cosmology. Bookmark the permalink.