Nanoscale nonlinear light source optical device can be controlled electronically

This schematic demonstrates how the EFISH device's dual electric and optical functions could be used to communicate data in a chip-based environment. (Credit: Mark Brongersma)

Not long after the development of the first laser in 1960 scientists discovered that shining a beam through certain crystals produced light of a different color; more specifically, it produced light of exactly twice the frequency of the original. The phenomenon was dubbed second harmonic generation. The green laser pointers in use today to illustrate presentations are based on this science, but producing such a beautiful emerald beam is no easy feat. The green light begins as an infrared ray that must be first processed through a crystal, various lenses and other optical elements before it can illuminate that PowerPoint on the screen before you.

It was later discovered that applying an electrical field to some crystals produced a similar, though weaker, beam of light. This second discovery, known as EFISH — for electric-field-induced second harmonic light generation — has amounted mostly to an interesting bit of scientific knowledge and little more. EFISH devices are big, demanding high-powered lasers, large crystals and thousands of volts of electricity to produce the effect. As a result, they are impractical for all but a few applications.

In a paper published September 22 in Science, engineers from Stanford have demonstrated a new device that shrinks EFISH devices by orders of magnitude to the nanoscale. The result is an ultra-compact light source with both optical and electrical functions. Research implications for the device range from a better understanding of fundamental science to improved data communications.

via Nanoscale nonlinear light source optical device can be controlled electronically.

This entry was posted in Science, Technology. Bookmark the permalink.