Researchers discover ‘superatoms’ with magnetic shells

A team of Virginia Commonwealth University scientists has discovered a new class of ‘superatoms’ – a stable cluster of atoms that can mimic different elements of the periodic table – with unusual magnetic characteristics.

The superatom contains magnetized magnesium atoms, an element traditionally considered as non-magnetic. The metallic character of magnesium along with infused magnetism may one day be used to create molecular electronic devices for the next generation of faster processors, larger memory storage and quantum computers.

In a study published online  the team reports that the newly discovered cluster consisting of one iron and eight magnesium atoms acts like a tiny magnet that derives its magnetic strength from the iron and magnesium atoms. The combined unit matches the magnetic strength of a single iron atom while preferentially allowing electrons of specific spin orientation to be distributed throughout the cluster.

Through an elaborate series of theoretical studies, Shiv N. Khanna, Ph.D.,  and his team examined the electronic and magnetic properties of clusters having one iron atom surrounded by multiple magnesium atoms.

“Our research opens a new way of infusing magnetic character in otherwise non-magnetic elements through controlled association with a single magnetic atom. An important objective was to discover what combination of atoms would lead to a species that is stable as we put multiple units together,” said Khanna.

“The combination of magnetic and conducting attributes was also desirable. Magnesium is a good conductor of electricity and, hence, the superatom combines the benefit of magnetic character along with ease of conduction through its outer skin,” he said.

via Researchers discover ‘superatoms’ with magnetic shells.

This entry was posted in Chemistry. Bookmark the permalink.