Cheap, abundant cathode material found for producing hydrogen fuel

By replacing catalysts made of expensive noble metals like platinum with cheaper, earth-abundant materials, researchers have taken a step toward enabling the large-scale production of hydrogen from sunlight and water. In a recent study, the researchers have demonstrated that catalysts made of molecular clusters based on molybdenum and sulphur can generate hydrogen from sunlight at rates comparable to those of platinum.

The researchers, led by Professor Ib Chorkendorff from the Technical University of Denmark, with coauthors from institutions in Denmark and the US, have published their study in a recent issue of Nature Materials.

As the researchers explain in their study, producing fuels from sunlight could lead to the development of a sustainable energy system, without the need for fossil fuels. Sunlight can be used to produce a variety of carbon-based solar fuels such as methanol and methane, but the simplest solar fuel to produce is hydrogen. In a typical solar hydrogen system, photovoltaic panels turn sunlight into electricity that is then used to extract hydrogen from water.

One type of solar hydrogen system is a chemical solar cell, which can harvest a large part of the solar spectrum and use it to generate hydrogen from water. Chemical solar cells consist of many pillars, with the top half of each pillar made of a photoanode that absorbs the blue part of the solar spectrum, and the bottom half made of a photocathode that absorbs the red part. When blue light is absorbed, it oxidizes water into oxygen and protons. The protons migrate through a membrane in which the pillars are embedded, ending up at the photocathode. As red light is absorbed, catalysts attached to the sides of the pillars reduce the protons to hydrogen.

via Cheap, abundant cathode material found for producing hydrogen fuel (w/ video).

This entry was posted in Chemistry, Technology. Bookmark the permalink.

2 Responses to Cheap, abundant cathode material found for producing hydrogen fuel

  1. alfy says:

    This seems to be one of the most significant pieces of research in the decade, if not the century. Solar energy is the most readily accessible energy source in the world, and these johnnies seem to have found a relatively cheap way to harness it. Am I right, “Deskaratiman”, in thinking that only 0.03% of the incident solar radiation is captured, and that by green plants, Lor’ bless ’em, while we scratch around letting all the rest of it go to waste?
    Watch this space, maybe Ib in Denmark will become a name to conjure with.

  2. Deskarati says:

    Hi Alfy, why do you always test me like this? I assume by ‘incident solar radiation’ you mean Insolation. Well according to the font of all knowledge (my good friend Mr. Wik I Pedia):
    Direct insolation is the solar irradiance measured at a given location on Earth with a surface element perpendicular to the Sun’s rays, excluding diffuse insolation (the solar radiation that is scattered or reflected by atmospheric components in the sky). Direct insolation is equal to the solar constant minus the atmospheric losses due to absorption and scattering. While the solar constant varies with the Earth-Sun distance and solar cycles, the losses depend on the time of day (length of light’s path through the atmosphere depending on the Solar elevation angle), cloud cover, moisture content, and other impurities. Insolation is a fundamental abiotic factor affecting the metabolism of plants and the behavior of animals.
    Over the course of a year the average solar radiation arriving at the top of the Earth’s atmosphere is roughly 1,366 watts per square meter (see solar constant). The radiant power is distributed across the entire electromagnetic spectrum, although most of the power is in the visible light portion of the spectrum. The Sun’s rays are attenuated as they pass though the atmosphere, thus reducing the insolation at the Earth’s surface to approximately 1,000 watts per square meter for a surface perpendicular to the Sun’s rays at sea level on a clear day.
    The actual figure varies with the Sun angle at different times of year, according to the distance the sunlight travels through the air, and depending on the extent of atmospheric haze and cloud cover. Ignoring clouds, the average insolation for the Earth is approximately 250 watts per square meter (6 (kW·h/m2)/day), taking into account the lower radiation intensity in early morning and evening, and its near-absence at night.
    The insolation of the sun can also be expressed in Suns, where one Sun equals 1,000 W/m2 at the point of arrival, with kWh/(m2·day) displayed as hours/day. When calculating the output of, for example, a photovoltaic panel, the angle of the sun relative to the panel needs to be taken into account as well as the insolation. (The insolation, taking into account the attenuation of the atmosphere, should be multiplied by the cosine of the angle between the normal to the panel and the direction of the sun from it). One Sun is a unit of power flux, not a standard value for actual insolation. Sometimes this unit is referred to as a Sol, not to be confused with a sol, meaning one solar day on, for example, a different planet, such as Mars

Comments are closed.