In physics (especially astrophysics), redshift happens when light seen coming from an object is proportionally shifted to appear more red. Here, the term “redder” refers to what happens when visible light is shifted toward the red end of the visible spectrum. More generally, where an observer detects electromagnetic radiation outside the visible spectrum, “redder” amounts to a technical shorthand for “increase in electromagnetic wavelength” — which also implies lower frequency and photon energy in accord with, respectively, the wave and quantum theories of light.

Doppler effect, yellow (~575 nm wavelength) ball appears greenish (blueshift to ~565 nm wavelength) approaching observer, turns orange (redshift to ~585 nm wavelength) as it passes, and returns to yellow when motion stops. To observe such a change in color, the object would have to be traveling at approximately 5200 km/s, or about 75 times faster than the speed record for the fastest manmade space probe.

Redshifts are attributable to the Doppler effect, familiar in the changes in the apparent pitches of sirens and frequency of the sound waves emitted by speeding vehicles; an observed redshift due to the Doppler effect occurs whenever a light source moves away from an observer. Cosmological redshift is seen due to the expansion of the universe, and sufficiently distant light sources (generally more than a few million light years away) show redshift corresponding to the rate of increase of their distance from Earth. Finally, gravitational redshifts are a relativistic effect observed in electromagnetic radiation moving out of gravitational fields. Conversely, a decrease in wavelength is called blue shift and is generally seen when a light-emitting object moves toward an observer or when electromagnetic radiation moves into a gravitational field.

Although observing redshifts and blue shifts have several terrestrial applications (e.g., Doppler radar and radar guns),redshifts are most famously seen in the spectroscopic observations of astronomical objects.

A special relativistic redshift formula (and its classical approximation) can be used to calculate the redshift of a nearby object when spacetime is flat. However, many cases such as black holes and Big Bang cosmology require that redshifts be calculated using general relativity. Special relativistic, gravitational, and cosmological redshifts can be understood under the umbrella of frame transformation laws. There exist other physical processes that can lead to a shift in the frequency of electromagnetic radiation, including scattering and optical effects; however, the resulting changes are distinguishable from true redshift and not generally referred as such.

Deskarati – We have always had an underlying worry about the use of using redshift to explain the universe, but we are not quite sure why (spooky). This post is just a brief introduction to this phenomena. Please take time to read the full Wikipedia article hereRedshift

This entry was posted in Physics. Bookmark the permalink.