New solar cell self-repairs like natural plant systems

Scientists have created a new type of solar cell which, for the first time, is able to replicate any degradation. This should lead to longer life times and reduction in costs – Deskarati

Photoelectrochemical cells convert sunlight into electricity and use an electrolyte to transport electrons and create the current. The cells contain light-absorbing dyes called chromophores, chlorophyll-like molecules that degrade due to exposure to sunlight.

“The critical disadvantage of conventional photoelectrochemical cells is this degradation,” Choi said. The new technology overcomes this problem just as nature does: by continuously replacing the photo-damaged dyes with new ones.

“This sort of self-regeneration is done in plants every hour,” Choi said.

The new concept could make possible an innovative type of photoelectrochemical cell that continues operating at full capacity indefinitely, as long as new chromophores are added. Findings were detailed in a November presentation during the International Mechanical Engineering Congress and Exhibition in Vancouver. The article were written by Choi, doctoral students Benjamin A. Baker and Tae-Gon Cha, and undergraduate students M. Dane Sauffer and Yujun Wu.

The carbon nanotubes work as a platform to anchor strands of DNA. The DNA is engineered to have specific sequences of building blocks called nucleotides, enabling them to recognize and attach to the chromophores.

“The DNA recognizes the dye molecules, and then the system spontaneously self-assembles,” Choi said

Read the article here New solar cell self-repairs like natural plant systems.

This entry was posted in Biology, Technology. Bookmark the permalink.