Research uses quantum mechanics to melt glass at absolute zero

Quantum mechanics, developed in the 1920s, has had an enormous impact in explaining how matter works. The elementary particles that make up different forms of matter — such as electrons, protons, neutrons and photons — are well understood within the model quantum physics provides. Even now, some 90 years later, new scientific principles in quantum physics are being described. The most recent gives the world a glimpse into the seemingly impossible.

Prof. Eran Rabani of Tel Aviv University’s School of Chemistry and his colleagues at Columbia University have discovered a new quantum mechanical effect with glass-forming liquids. They’ve determined that it’s possible to melt glass — not by heating it, but by cooling it to a temperature near Absolute Zero.

This new basic science research, to be published in Nature Physics, has limited practical application so far, says Prof. Rabani. But knowing why materials behave as they do paves the way for breakthroughs of the future. “The interesting story here,” says Prof. Rabani, “is that by quantum effect, we can melt glass by cooling it. Normally, we melt glasses with heat.”

via Research uses quantum mechanics to melt glass at absolute zero.

This entry was posted in Physics. Bookmark the permalink.