Graham’s number – The Largest Number ever Used.


Graham’s number, named after Ronald Graham, is a large number that is an upper bound on the solution to a certain problem in Ramsey theory.

The number gained a degree of popular attention when Martin Gardner described it in the “Mathematical Games” section of Scientific American in November 1977, writing that “In an unpublished proof, Graham has recently established … a bound so vast that it holds the record for the largest number ever used in a serious mathematical proof.”

The 1980 Guinness Book of World Records repeated Gardner’s claim, adding to the popular interest in this number. Graham’s number is unimaginably larger than other well-known large numbers such as a googol, googolplex, and even larger than Skewes’ number and Moser’s number. Indeed, the observable universe is far too small to contain an ordinary digital representation of Graham’s number, assuming that each digit occupies at least one Planck volume. Even power towers of the form a^b^c……..  are useless for this purpose, although it can be easily described by recursive formulas using Knuth’s up-arrow notation or the equivalent, as was done by Graham. The last ten digits of Graham’s number are …2464195387.

via Graham’s number – Wikipedia, the free encyclopedia.

This entry was posted in Mathematics. Bookmark the permalink.